如何用 Python 实现一个 “系统声音” 的实时律动挂件

news/2024/7/19 9:28:24 标签: python, 开发语言, 前端, 图像处理, 爬虫

前言

应该是三年前,我用 Esp8266 和 ws2812 实现了一个音乐律动灯带。就是电脑播放音乐时,灯带会随着系统内部音乐播放的频率而闪动不同色彩的灯珠。而当时用来监听系统声音的工具是一个博主提供的,除了实时采集声音外还通过 UDP 传递数据到 Esp8266 上。

而这次,我就自己用 Python 实现一下,不过不传数据,就采集后直接实时地在电脑上绘制波形动画,主要是用来作为 FL Studio 播放时的一个桌面小挂件。

环境

python3.8

pyaudio0.2.14

matplotlib

pyaudio 简介

pyaudio 是一个跨平台地音频 I/O 库,使用他可以在 Python 程序中进行播放,录音和生成 wav 文件等。需要注意的是,如果要使用 pyaudio 时,python 的版本最好在 3.7 以上,不然 pip 安装会报错。因为以下例子是获取系统内部声音,而 pyaudio 读取的音频流默认是麦克风,所以接下来介绍一下关于获取的设备列表信息。

代码获取设备列表
# pyaudio实例
audio = pyaudio.PyAudio()
# 获取设备总数
device_count = audio.get_device_count()
# 根据设备索引获取设备详细信息
for i in range(p.get_device_count()):
	devInfo = p.get_device_info_by_index(i)
	print(devInfo)

设备信息参数介绍
  • index: 设备的索引号,通常用于标识系统中的设备顺序。
  • structVersion: 结构版本号,用于表示这个数据结构的版本。
  • name: 设备的名称,这里是 “Microsoft 声音映射器 - Input”。
  • hostApi: 主 API 的标识符,通常用于表示该设备属于哪个 API 或系统。
  • maxInputChannels: 设备支持的最大输入通道数,这里是 2,表示设备支持 2 个输入通道。
  • maxOutputChannels: 设备支持的最大输出通道数,这里为 0,表示该设备没有输出通道。
  • defaultLowInputLatency: 默认的低输入延迟,以秒为单位,这里是 0.09 秒。
  • defaultLowOutputLatency: 默认的低输出延迟,这里是 0.09 秒。
  • defaultHighInputLatency: 默认的高输入延迟,这里是 0.18 秒。
  • defaultHighOutputLatency: 默认的高输出延迟,这里是 0.18 秒。
  • defaultSampleRate: 默认的采样率,这里是 44100.0 赫兹,这是 CD 质量的音频标准采样率。

开始操作

开启立体声混音权限

打开电脑设置 - 系统 - 声音 - 管理声音设备 - 立体声混响,点击启用。

设置设备索引号

打开立体声混音后,通过 pyaudio 获取设备列表,找到带有 “立体声混音” 的名称,和 hostApi 为 0 的,hostAPI = 0 表明是 MME 设备。然后拿到该设备索引号,打开音频流时指定该内录设备序号。

def findInternalRecordingDevice(p):
    # 要找查的设备名称中的关键字
    target = '立体声混音'
    # 逐一查找声音设备
    for i in range(p.get_device_count()):
        devInfo = p.get_device_info_by_index(i)
        print(devInfo)
        if devInfo['name'].find(target) >= 0 and devInfo['hostApi'] == 0:
            # print('已找到内录设备,序号是 ',i)
            return i
    print('无法找到内录设备!')
    return -1

全部代码
import pyaudio
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
import wave

FORMAT = pyaudio.paInt16
CHANNELS = 1  
RATE = 44100  
CHUNK = 4096  
# CHUNK = 1024  
WAVE_OUTPUT_FILENAME = 'audio_output.wav'

# 获取内录设备序号,在windows操作系统上测试通过,hostAPI = 0 表明是MME设备
def findInternalRecordingDevice(p):
    # 要找查的设备名称中的关键字
    target = '立体声混音'
    # 逐一查找声音设备
    for i in range(p.get_device_count()):
        devInfo = p.get_device_info_by_index(i)
        print(devInfo)
        if devInfo['name'].find(target) >= 0 and devInfo['hostApi'] == 0:
            # print('已找到内录设备,序号是 ',i)
            return i
    print('无法找到内录设备!')
    return -1

# Initialize PyAudio
audio = pyaudio.PyAudio()

# 这里input_device_index的2就是系统内录设备索引
stream = audio.open(input_device_index=2,
                    format=FORMAT,
                    channels=1,
                    rate=RATE,
                    input=True,
                    frames_per_buffer=CHUNK)

plt.ion()
fig, ax = plt.subplots()
x = np.arange(0, CHUNK)
line, = ax.plot(x, np.zeros(CHUNK))
ax.set_xlim(0, CHUNK)
ax.set_ylim(-32768, 32767)

wave_output_file = wave.open(WAVE_OUTPUT_FILENAME, 'wb')
wave_output_file.setnchannels(CHANNELS)
wave_output_file.setsampwidth(audio.get_sample_size(FORMAT))
wave_output_file.setframerate(RATE)

def update_plot(data):
    print(data)
    line.set_ydata(data)
    fig.canvas.draw()
    fig.canvas.flush_events()

def display_audio_waveform():
    while True:
        try:
            audio_data = np.frombuffer(stream.read(CHUNK), dtype=np.int16)
            # update_plot(audio_data*500)
            update_plot(audio_data)
            # wave_output_file.writeframes(audio_data)
        except KeyboardInterrupt:
            break

display_audio_waveform()

stream.stop_stream()
stream.close()
audio.terminate()

wave_output_file.close()
print('Audio saved to', WAVE_OUTPUT_FILENAME)

如果你对Python感兴趣,想要学习python,这里给大家分享一份Python全套学习资料,都是我自己学习时整理的,希望可以帮到你,一起加油!

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

1️⃣零基础入门

① 学习路线

对于从来没有接触过Python的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

② 路线对应学习视频

还有很多适合0基础入门的学习视频,有了这些视频,轻轻松松上手Python~
在这里插入图片描述

③练习题

每节视频课后,都有对应的练习题哦,可以检验学习成果哈哈!
在这里插入图片描述

2️⃣国内外Python书籍、文档

① 文档和书籍资料

在这里插入图片描述

3️⃣Python工具包+项目源码合集

①Python工具包

学习Python常用的开发软件都在这里了!每个都有详细的安装教程,保证你可以安装成功哦!
在这里插入图片描述

②Python实战案例

光学理论是没用的,要学会跟着一起敲代码,动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。100+实战案例源码等你来拿!
在这里插入图片描述

③Python小游戏源码

如果觉得上面的实战案例有点枯燥,可以试试自己用Python编写小游戏,让你的学习过程中增添一点趣味!
在这里插入图片描述

4️⃣Python面试题

我们学会了Python之后,有了技能就可以出去找工作啦!下面这些面试题是都来自阿里、腾讯、字节等一线互联网大厂,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
在这里插入图片描述
在这里插入图片描述

上述所有资料 ⚡️ ,朋友们如果有需要的,可以扫描下方👇👇👇二维码免费领取🆓


http://www.niftyadmin.cn/n/5316590.html

相关文章

Gradle的安装及源替换步骤详解

工具介绍 Gradle是一款强大的构建工具,用于管理项目的依赖关系和构建过程。在使用Gradle之前,我们需要先进行安装,并可能需要更改默认的依赖源,以提高下载速度。下面是一步步的Gradle安装及源替换指南。 第一步&#xff1a…

【C++】STL 算法 ⑨ ( 预定义函数对象示例 - 将容器元素从大到小排序 | sort 排序算法 | greater<T> 预定义函数对象 )

文章目录 一、预定义函数对象示例 - 将容器元素从大到小排序1、sort 排序算法2、greater<T> 预定义函数对象 二、代码示例 - 预定义函数对象1、代码示例2、执行结果 一、预定义函数对象示例 - 将容器元素从大到小排序 1、sort 排序算法 C 标准模板库 ( STL , Standard Te…

MongoDB 索引管理

文章目录 前言1. 术语介绍1.1 index / key1.2 Coverd Query1.3 IXSCAN / COLLSCAN1.4 Selectivity1.5 Index Prefix 2. 索引原理3. 索引的维护3.1 创建索引语法3.2 单字段索引3.3 多字段复合索引3.4 数组的多列索引3.5 全文索引3.6 Hash 索引3.7 TTL 索引3.8 删除索引3.9 后台创…

【Linux】 nohup命令使用

nohup命令 nohup是Linux和Unix系统中的一个命令&#xff0c;其作用是在终端退出时&#xff0c;让进程在后台继续运行。它的全称为“no hang up”&#xff0c;意为“不挂起”。nohup命令可以让你在退出终端或关闭SSH连接后继续运行命令。 nohup 命令&#xff0c;在默认情况下&…

【我想开发一个小程序,大概需要多少钱?】

小程序开发为什么报价差距很大&#xff1f;主要是因为小程序的实现方法和功能模型不同。 小程序的实现方法&#xff1a; 实现方法主要分为SAAS小程序、定制小程序和第三方平台小程序。不同的实现方法价格都是不一样的&#xff0c;大概的区间如下&#xff1a; SAAS小程序和第三…

scrollTop与offsetTop解决小分辨率区域块向上滚动效果效果,结合animation与@keyframes实现标题左右闪动更换颜色效果。

scrollTop 是一个属性&#xff0c;它表示元素的滚动内容垂直滚动条的位置。对于可滚动元素&#xff0c;scrollTop 属性返回垂直滚动条滚动的像素数&#xff0c;即元素顶部被隐藏的像素数。 offsetTop 是一个属性&#xff0c;用于获取一个元素相对于其父元素的垂直偏移量&…

【动态规划】C++ 算法458:可怜的小猪

作者推荐 视频算法专题 涉及知识点 动态规划 数学 力扣458:可怜的小猪 有 buckets 桶液体&#xff0c;其中 正好有一桶 含有毒药&#xff0c;其余装的都是水。它们从外观看起来都一样。为了弄清楚哪只水桶含有毒药&#xff0c;你可以喂一些猪喝&#xff0c;通过观察猪是否…